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Particle number fluctuations in a membrane channel
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Channel-facilitated transport of metabolites across biological membranes results in excess noise in
the current carried by small ions. This noise originates from fluctuations of the number of metabolite
molecules in the channel due to their diffusion. We have carried out a theoretical study of particle
number fluctuations in a cylindrical pore. First, we obtain the power spectral density of these
fluctuations as a function of pore length and radius, as well as the diffusion constants of the particle
in the pore and in the bulk, in the absence of particle—pore interactions. We then perform
three-dimensional Brownian dynamics simulations that show excellent agreement with the
analytical result. Finally, we demonstrate that explicit expressions for the low-frequency limit of the
spectral density can be found even when the particle interacts with the pored00® American
Institute of Physicg.S0021-960600)70842-7

I. INTRODUCTION electrolyte ion current through the membrane channel. The
current decreases when a neutral metabolite molecule enters
In this paper we analyze fluctuations of the number ofthe channel. The average decrease of the current is propor-
diffusing particles in a cylindrical channel connecting two tional to the average number of molecules inside the channel
reservoirs shown in Fig. 1. This problem arises in connectiowhen this number is small. From solute-induced current fluc-
with the measurements of the diffusion constants of metabatuations measured with the time resolution of a typical
lites inside membrane channels. It is now firmly establishedingle-channel experimertisually in the range of tens or
that transport of metabolites and, more generally, highhundreds of micro-seconygsit is possible to deduce diffu-
molecular-weight solutes occurs through large channels igion constant corresponding to the much faster transients
the cell membranes.Examples of such channels include (e.g., in the nanosecond rande
bacterial porins, mitochondrial channels, gap junctions, the  One can characterize solute-induced fluctuations in the
nuclear pore complex, and protein-conducting channels ifon currenti in terms of the experimentally accessible
the endoplasmic reticulum. A recent stddgven suggests parameter—the power spectral dens®y(f ). In situations
that particles as large as phage(&ibout 7 nm in diametgr where the average number of metabolite molecules in the
can exit host cells with the help of a phage-encoded channehannel{N), is small enough to neglect interactions between
protein. molecules,S;(f) is proportional to the normalized power
The membrane transport properties for solutes other thagpectral density of molecule number fluctuatio8éf, ),
monoatomic ions are usually determined from macroscopic
fluxes of the molecules in question through multichannel ob-
jects such as cells, cell organelles, or liposomes. The macro-
scopic flux measurements involve radioactive, fluorescent, or
colorimetric probes, electron-opaque tracets/iposome  whereAg is the reduction in channel conductance upon en-
swelling? or solute-specific reactions, such as the luciferin—tering of one metabolite molecul¥, is the applied voltagé.
luciferase system for adenosine triphosphate detetion.  The spectral density can be expressed in terms of the nor-
Alternatively, the transport properties can be determinednalized correlation function of the number of metabolites in
by measuring how the addition of metabolite influences thehe channelC(t) (e.g., see Ref.)8
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It is worth mentioning that often there is a highly spe-
\7 — ? cific binding site for the metabolite inside the channel pore.
K — o . . - .

' ne of the well known examples is sugar interaction with the

p o, & f maltoporin channel®®If the mean lifetime of the metabo-

) spectral density can be dramatically different from the one
~ f a &7 S discussed here and will be considered in a forthcoming pub-
lication.

lite on the site is comparable or larger thaf/D, the noise

FIG. 1. A cylindrical channel of length and radiusa in equilibrium with
two reservoirs. Due to diffusion, Brownian particles exchange between th¢|. STATEMENT OF THE PROBLEM
channel and the bulk. Arrows illustrate random displacement of particles

during time incremenat. The instantaneous particle number in the channel ~ Consider two compartments connected by a cylindrical
fluctuates(see Fig. 3, giving rise to channel conductance fluctuations. channel of radius and IengthL (Fig. 1) Containing nonin-
teracting particles that diffuse independently. The diffusion

This expression shows that the spectral density is the Fouriéf® gséants n thet_ch?nn\?\} anql;'}.th; tl%u'k will b?. de dnoted)kl)y

transform of the number correlation function. The correlationf?n ; b :_espe<f: 't\r/]e y: iw' fm " el no_rmtzi]lze h CO”? i'
function is identical to the probability of finding a particle in 'on function of the number ot particles n the channel by
the channel given that initially the particle was uniformly calculating the time-dependent probability of finding a par-

distributed in the channéthat is, the survival probability of UC!€ in the channel given that initially the particle was uni-
the particle. formly distributed along the channel.

Conductance noise arising from the stochastic nature of It IS natgral to apprommatg .the motpn in the chapnel as
matter (or hea} exchange between the sample and theone-d|men3|ona?l. .The probab|l'|ty densip(x,t)=p inside
“bath” has been repeatedly addressed for at least half éhe channel satisfies the equation
century? In some cases, for example, for the uniform three-  gp a°p
dimensional diffusion of particles in and out of a spherical E:D X2’ 0<x<L, ©)

volumel? exact expressions for the power spectral density of

the particle number fluctuations have been obtained. How@nd the initial conditiorp(x,0)=1/L. This equation must be
ever, for a cylindrical channel connecting two reservoirs thisSUPPlemented by boundary conditionsxatO.L, which will
is not the case. To estimate the low-frequency componentlée dlscgssed beloyv: The cprrglatlon function of interest is
and frequency width of the particle number fluctuations in-the survival probability and is given by
side the channel, different groups use different expressions L
relating these quantities to the channel lengthand diffu- C(t)= J p(x,t)dx. (4)
sion constant inside the channé&l, For example, the fre- 0
quency width has been estimated&rL? (Ref. 11, D/L?>  We will solve Eq.(3) by the Laplace transform method.
(Ref. 12, or 6D/7rL? (this estimate follows from the char- Given the Laplace transform of the survival probability
acteristic diffusion relaxation time,?/12D, given by Feher "
and Weissmalt and by Berg, if one assumes a simple C(s):f e S'C(t)dt, (5
Lorentzian shape for the noise spectjuffihough all these 0
expressions indeed retain tRéL? ratio, they give different gne can find the spectral density by the relation
numerical factors for the cut-off frequency and, therefore, for .
the low-frequency spectral density. Moreover, all these ex- S(f)=4 RgC(s=i27f)}. (6)
pressions, being independent of the channel radius,fact,  Thys, the calculation d8(f ) reduces to finding the Laplace
are obtained for a long and narrow channel for whidia  {ransform of the survival probability.
>1 and, therefore, one can neglect the particle return prob-
ability.

In this paper we obtain the Fourier transform of the num-!!l: ANALYTIC EXPRESSION FOR THE SPECTRAL

ber correlation function by reducing the three-dimensionaPENSITY

problem to the effective one-dimensional problem for the  The formalism of this section is based on boundary con-
particle diffusing in the channel. We obtain an analyticalditions that are obtained using intuitive arguments. In the
expression for the spectral density as a function of frequencyzext section, using a more rigorous approach, we will show
which depends on the length and radius of the channel agat the analytic expression for the spectral density obtained
well as the diffusion constants of the particle in the channepelow is valid except at very high frequencidat/D>1).

and in the bulk. The analytical result is in excellent agree- A partide reaching the channel end may escape to infin-
ment with the spectral density found by Brownian dynamicsity or may return back into the channel. To describe this we

simulations. Fina”y, we show how one can analytica”y Ob'use radiation boundary conditions of the form

tain the low-frequency limit of the spectral density for the

case of arbitrary potentidl (x) along the channel as well as Dap(x,t) — kp(0}): Dap(x,t) — — kp(LoD)
arbitrary dependence of the diffusion coefficient on particle’s x|, Y x| T
position inside the channel. (7)
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wherek is a rate constant characterizing the “efficiency of 1 2
escape” at the endpoints. sp— L D
To find x we consider a particle in a system of two
compartments connected by a chanfieéhg. 1) at equilib-
rium. It is equally probable to find the particle at any point
and, therefore, the equilibrium density is a constany,
=1/N, whereV is the total volume of the system. The effec-
tive one-dimensional density inside the channel is also conP(X,s)

QB
o

C)

g

d

The solution of this equation satisfying the initial and bound-
ary conditions is

stant and given by, g eq= ma?/V. We determinex from
the condition that fluxes entering and leaving the channel are < COS \E X — E
equal to each other. The flux escaping the channel into a 1 2
compartment ig .= xkma2/V. This flux is compensated by = Ls 1- L L
the entering flux,j;,=4Dypa/V, where the rate constant, Kcosr( \ﬁ_ + stinr( ﬁ_)
4Dya, describes the steady-state trapping of particles by an 2 2
absorbing disk of radius located on a reflecting walf. (10)
Sincejin=jou,» We obtain
_ 4Dy Integrating this with respect to over the interval (Q,), we

K= "ma ®  find the Laplace transform of the survival probability
This rate constant depends on the bulk diffusion constant.
When D,—% or a—0, k— which means that the end- . 1 1

, ) C(s)=— (11)

points become perfectly absorbing. s L s L s L

To find the survival probability one has to solve the dif- sl s—+ \ﬁ _Cot}—< \ﬁ _)
fusion equatiolEq. (3)] with the boundary conditions in Eq. 2K D2 D2
(7) and the initial conditiorp(x,0)=1/L. Laplace transform-
ing Eq.(3) we have Using Eq.(6) we find

|
2B(sint? a+sir? @) + sinh(2a) — sin(2a)
S(f)= . . — > - , (12
mfa 2(sintf a+cos a)+ B(sinh(2a) —sin(2a)) + BZ(sinlf a +sirf a)
|
where The expression fo6,(0) was obtained earliéf It is seen
that the second term in parentheses disappeai3/i
_ mf L 4D maD |7 aD and/ora/L approach zero. For comparison, in Fig. 2 we draw
“=\Np2 P L1, Vaph S(f) and S,(f) for a/L=0.025, 0.05, and 0.25 takin

(13 =Dy
To estimate the level of accuracy of the analytical result
By putting 8=0 we find S,(f) corresponding to perfectly obtained above we performed Brownian dynamics simula-

absorbing endpoints tions of the system in Fig. 1. A typical time record of the
number of particles in the channel is presented in Fig. 3. It
) af ) af gives a small fragment of the total trajectory that was used to
NG sin 3'— —sin \/ L calculate the spectral density. The particle number fluctuates
L(F)= R ) between zero, one, two, and, rarely, th(d® central part of
(mf)™ L ) mf L mf L the upper trace The events corresponding to a particle’s
sin VD 2 teos D 2 passagehroughthe channel are marked by the pairs of up-

(14) ward and downward arrows. These events are relatively long.
An upward arrow shows the moment a particle enters the
The expression foB(f ) takes into account the finiteness channel; the following downward arrow shows the moment
of the ratioa/L while S,(f) corresponds to the limiting case this particle escapes from tlwppositeside of the channel. It
when the ratio is zero. The most interesting qualitative maniis seen that most of the events are unmarked. They corre-
festation of the finiteness of this ratio is the increase of thgpond to realizations when particles enter and leave the chan-
low-frequency “white” part of the spectrum$(0), com-  nel from the same side. These events are obviously much
pared t0oS,(0) shorter than those corresponding to the particle transloca-
tions through the channel.
The particle number correlation function and spectral
density can be calculated from long trajectories of this type.

2

7 Da L
, Sa(0)= 3D (15

3
1+ o —

S(0)=8,(0) 1+ 5 5 7
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FIG. 3. Number of particles in the channel as a function of time obtained in
numerical simulations. Three-dimensional Brownian trajectories were gen-
erated using three normally distributed random variables that determined the
jump of a particle in each direction during the discrete time 2xépThe
values of parameters were chosen so tHang<a?, making the diffusion
simulation effectively continuous in space. Collisions with the walls were
assumed to be elastic. The reservoir size was taken to be much larger than
the channel diametaa (namely, 550X 50 for a=1) to get rid of finite

Ili:rﬁé) ZE Zh(i%;e;:ﬂl%egfgogsreﬁg lézﬁgilgrﬁ?hil?f?esrzgz :23322? size effects. The traces presented here have been obtainéd=f20, D
» =0S. ' P =5.10"2 with the total of 640 particles in the system. A time interval

a=1, andD,=D=1. From top to bottoma/L =0.025, 0.05, and 0.25. It is corresponding to Fotime steps is shown below the record
seen that as the channel length decreases, the bends of the spectral curves '
move to the right, to higher frequencies. Simultaneously, the curves move

downward to preserve the area under the curve which is normalized to one.

This normalization can be checked using E2).

10-2 T T T T T T T
10" 107 107 10"

Frequency

Figure 4 compares the spectral density obtained from Eg. 101‘;
(12) with simulation results. Good agreement is found not ]
only for long channelge.g., the top tracd,/a=40), but also
for relatively short onege.g., the bottom trace,/a=4).

0 _|
Equation(12) adequately describes both the low-frequency, 10 ]
white part of the power spectrum and its high-frequency
tail.*®
2 1074
IV. A MORE SOPHISTICATED SOLUTION OF THE g
PROBLEM g
The solution obtained above is based on using the radia-g
tion boundary conditions, Eq7), with « given by Eq.(8). 2 10% 4
& ]

Now we will derive boundary conditions in a more rigorous
way in order to rationalize the excellent agreement between
such a simple theory and simulations. This can be done by
matching the solution inside the channel with the bulk solu- 10_3?
tion outside the channel. ]
In the bulk, outside the channel, the problem is three-
dimensional and the probability density;(p,x,t) =p3, sat-

-4
isfies the equatiofwe now use cylindrical coordinates with 10 107 1'(').6 1(’).5 1(‘)_4 16.3
p denoting the distance from the channel axis
Frequency
Jd
ﬁ = DbV2p3, Xx<0, x>L. (16) FIG. 4. Spectral density obtained from numerical simulations in comparison
dt with the theoretical predictions. Solid lines are drawn according to(Bg.

. . - - ith (NY=Lwa?n and S(f) given in Eq.(12). Parameters are: particle
Inside the channel the problem is also thr_ee-dlmen5|ona_|'€voncém>raﬂognzomy (Ag)=%.1, anqZL )Db=D=5~1O‘3, an% !
However, it can be reduced to a one-dimensional problem it 49.30:20:10:4, from top to bottom. Excellent agreement between the

(a) the initial concentration is uniform an¢b) it is as-  theory and the simulations is seen over the entire frequency range.
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sumed that the cross-sectional concentration profile at th8olving the one-dimensional problem with the boundary
ends of the channel remains uniform for all time. After theseconditions in Eqs(23) and (24) it can be shown that the

assumptions have been made, this problem can be solvegplace transform of the survival probabilit(s), is given

exactly. by the expression in Eq11) with « replaced bysk(s)/wa?.

The probability density for the one-dimensional problempis result is exact for the problem specified by E(s)—
satisfies Eq(3). To match the intrachannel and bulk solu- 19

tions, we use the continuity of the probability density and the ;Fo compare the boundary conditions in E4®3) and
flux at the channel boundary. This leadgee consider only (24) with those given in Eq(7), we use the approximate
the left boundary located at=0) expression fof<(s) (Ref. 20

p(0t)=ma’ps(p,0t), 0<p<a (17
and i—l
ap(x,1) a apa(p,x.t) ] PN i i
1 3 1Ny S)= ——— + — _ —
D ax B :ZWDbfo pT B dp (18) S 4 Db 7T(4—7T) Sa2
x=0 x=0 - 4 R
m?—8 VD

The probability densityps(p,X,t) can be expressed in b (25)

terms of the concentration that arises in calculating the flux
into the absorbing disk. The disk has radaand is located
on a reflecting wall ak=0, so that its center is at the origin,
p=x=0. The concentration(p,X,t) satisfies the equation

This expression reproduces the first two terms in both large-
and smalls expansions of the rate constant. The correspond-
ing expression in time domain is exact at short and long
ac 5 times; at intermediate times it is within one percent of the
Fra DpV7e, x<0, (19 results of numerical solution of the diffusion equation. Equa-

tion (25 shows thatsk(s) approaches @D, when s

with the boundary conditions <D,/a2. In time domain this means thit) approaches its

ac(p,x,t) plateau value 4D, on times of the order 0&%/Dy,. Thus,
c(p,01)],<a=0, o =0, (200 on times larger tham?/Dy,, the boundary conditions in Eq.
x=0,p>a (7) and Eqgs(23) and(24) coincide.
and the initial conditionc(p,x,0)=1. Time-dependent rate Finally, we note that the boundary condition in E84)
coefficient describing the trapping is given by in time domain has the form
a ac(p,x,t)
k(t)ZZWDbJ Pl ™o dp. (21 ap(x,t)
0 X oo D
ox vl

The infinite time limit ofk(t) is 4D,a, the quantity used to 1 . (L)
It is most convenient to give the relation betweeynand ma 0 at
c in Laplace domain. The relation is

1 Thus the fluxes at timeare related to the densities at the end
Ps(p.x,8)=——3P(08)[1~5%p,X,9)]. (22)  points at earlier times.

One can check that thjs;(p,X,s) satisfies the Laplace trans-
form of the d|f_fgS|on equation in Eq(16), the _reflectmg_ V. CONCLUDING REMARKS
boundary conditions on the wall, and the matching condition

in Eq. (17). After substituting this result into the Laplace  |n this paper we derived an analytic expression for the
transform of the second matching condition in Et8), we  spectral density of the particle number fluctuations within the
obtain channel of lengtfL. In our theory the spectral density was

N A obtained by Fourier transforming the survival probability of

D&p(x,s)‘ :sk(sz) D(0s) (23  a particle initially uniformly distributed on an interval of
X ‘Xzo ma o lengthL with partially absorbing endpointsvhere radiation

~ boundary conditions were imposedt follows from Eq.(2)

wherek(s) is the Laplace transform &(t). that the spectral density at zero frequency is four times the

Equation(23) provides the boundary condition 80 | ,aan Jifetime of such a particle.
for the effectively one-dimensional problem inside the chan- g jifetime can be obtained in closed form for arbitrary
nel. In the same way one can derive the boundary Cond't'OBosition—dependent diffusion coefficieB(x) and potential

atx=L U(x) along the channét: By exploiting this result we can
) skis) readily obtain an analytic expression 8(0). Forexample,
D > ’ == —= p(L,s) (24 whenU(0)=U(L)=0 and bothD(x) and U(x) are sym-

X T

x=L metric about the center of the channel, it can be shown that
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